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1.  INTRODUCTION

Myelin holds a pivotal role in the central nervous system 
(CNS), serving as a protective insulating sheath that 
envelops nerve fibers. This offers a crucial structural rein-
forcement and ensures the efficient transmission of elec-
trical signals (Stadelmann et al., 2019). Consequently, the 
quantification of myelination levels is an invaluable bio-
marker with a wide range of applications. These include 
the study of heathy brain development, as well as inves-
tigation of neurodegenerative disorders such as Alzhei-

mer’s disease (Dean et  al., 2017), Parkinson’s disease 
(Dean et  al., 2016), and multiple sclerosis (MS) (Laule 
et  al., 2004; Laule & Moore, 2018; Loma & Heyman, 
2011), where myelin mapping can enhance the under-
standing of these conditions, and facilitate their diagno-
sis, treatment, and disease progression.

Considering its significance, various MRI techniques 
have been developed for myelin water imaging (MWI), a 
reliable proxy for myelin content. The most prevalent 
among these methods are relaxometry-based techniques 
that rely on the difference between the rapid relaxation 
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rate of water trapped between myelin sheaths and the 
relaxation rates of the intra-/extracellular water pools. 
Prominent techniques within this category include gradi-
ent and spin echo (GRASE) (Prasloski, Rauscher, et al., 
2012), multicomponent driven equilibrium single-pulse 
observation of T1 and T2 (mcDESPOT) (Deoni et al., 2013; 
Zhang et al., 2015), T2 magnetization prepared imaging 
(Nguyen et al., 2012; Oh et al., 2006), and magnetic reso-
nance fingerprinting (Y. Chen et  al., 2019; Nagtegaal, 
Koken, Amthor, & Doneva, 2020). To fully utilize the differ-
ences in T2 relaxation times and avoid biases caused by 
field inhomogeneities, approaches based on spin echo 
protocols are favorable. Signal processing then involves 
multicomponent T2 (mcT2) analysis (Does, 2018; Whittall 
et al., 1997), where one maps the relative fraction of the 
fast-relaxing T2 component (<40  ms) corresponding to 
water bound between myelin sheaths, and the longer T2 
component (40–200  ms) corresponding to intra-/extra-
cellular water (MacKay & Laule, 2016). The myelin water 
fraction (MWF) serves as an indirect measure of myelin 
content and is calculated as the ratio of the T2 spectral 
content corresponding to myelin water to the total area 
under the T2 spectrum.

The most efficient protocol for mcT2 mapping in vivo is 
2D (i.e., multislice) multiecho spin echo (MESE), offering 
high-sensitivity T2 relaxation times at clinically relevant 
scan times of 5–8 minutes. MESE signals, however, are 
contaminated by stimulated and indirect echoes (Hennig, 
1988), thereby deviating from ideal multiexponential 
behavior. Various strategies have been proposed to miti-
gate these effects, e.g., shifting to 3D MESE acquisitions 
(Dvorak et  al., 2020; Meyers et  al., 2009; Prasloski, 
Mädler, et al., 2012), adjusting the refocusing slice width 
to be significantly larger than the excitation slice profile 
(Faizy et al., 2016; Kumar et al., 2016; Pell et al., 2006), or 
using complex crusher gradient schemes (Kolind et al., 
2009; Mackay et al., 1994). A more effective solution is 
the utilization of advanced algorithms such as the 
extended phase graph (EPG) method, which iteratively 
traces the evolution of multiple spin populations through-
out an MESE echo train by incorporating the stimulated 
echoes into their signal model (Hennig, 1988; Lebel & 
Wilman, 2010). Another efficient approach is the echo 
modulation curve (EMC) algorithm, which employs Bloch 
simulations to comprehensively account for all coher-
ence pathways arising during the echo train, thereby 
faithfully reproducing both stimulated and indirect echoes 
(Ben-Eliezer et al., 2015, 2016; McPhee & Wilman, 2017; 
Radunsky et al., 2021).

Once a model is chosen for resolving the bias due to 
stimulated echoes, the fundamental approach to multi-
component analysis involves the inversion of the signal 
acquisition process. This inversion aims to identify the 

signals originating from distinct cellular water pools and 
extract the relative signal intensities associated with 
each of these pools. This inverse problem is inherently 
ill-posed and poses a significant challenge, even when 
incorporating various regularization techniques. Specif-
ically, this inversion process exhibits nonuniqueness in 
the solutions space and a high susceptibility to noise 
(Graham et al., 1996; Whittall & MacKay, 1989). Conse-
quently, despite its paramount relevance of myelin map-
ping for clinical applications, the field of MWI still lacks 
a gold standard which can effectively address these 
complexities.

In this study, we utilize a new paradigm for mcT2 fit-
ting, which effectively mitigates issues related to ambigu-
ity to produce reliable MWF maps. The novel aspect of 
this technique is a preprocessing step which performs 
statistical analysis of the signals from the entire WM in 
order to identify a set of multicomponent configurations 
(termed mcT2 ‘motifs’) which best describe the exam-
ined tissue. These motifs are then used as basis func-
tions for a regularized non-negative least square (RNNLS) 
mcT2 fitting of the signal within each voxel (Omer et al., 
2022). To further enhance its accuracy, our approach 
relies on the EMC signal model, which incorporates the 
exact pulse-sequence scheme and scan parameters to 
address the existence of stimulated and indirect echoes. 
This integration ensures the provision of accurate and 
reproducible T2 values that remain consistent across 
scanners and scan settings (Ben-Eliezer et  al., 2015, 
2016; Radunsky et al., 2021). Important methodological 
improvements are introduced in this study including 
accounting for transmit field (B1

+) inhomogeneities, the 
use of entropy-based regularization constraint, and 
enforcing pseudo-orthogonality among mcT2 motifs. Val-
idations are presented on a numerical phantom at varying 
SNRs, and on a physical three-compartment phantom 
having a unique design which offers ground truth values. 
Performance of the data-driven approach is also evalu-
ated vis-à-vis conventional RNNLS processing. Clinical 
applicability of the new approach is demonstrated on 
healthy subjects and people with MS.

2.  THEORY

2.1.  Conventional EMC-based mcT2 analysis

For readers’ convenience, we provide a concise overview 
of the conventional, nondata-driven approach to mcT2 
fitting of MESE signals using the EMC signal model and 
RNNLS fitting. A comprehensive description of this 
method is also available in Omer et al. (2022).

The MESE signal from each voxel represents a super-
position of signals from several subvoxel (cellular) water 
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pools. Due to contamination by stimulated and indirect 
echoes, attempting to model this signal using a multiex-
ponential decay approach will lead to inaccuracies. To 
address this issue, we employ the EMC algorithm, which 
generates realistic T2 decay curves by accurately simulat-
ing the exact pulse-sequence scheme, radiofrequency 
(RF) and gradient pulse shapes, and timing diagram of 
the 2D MESE protocol, used for image acquisition. The 
signal from each voxel can then be modeled as:

	
s = wi ⋅di = Dw,

i=1

NT2

∑
	 (1)

where s∈RETL  is the experimentally acquired signal, 
D ∈RETL  × NT2 is a simulated dictionary of single T2 EMC 
signals (di ), w ∈RNT2  is the relative fraction of each sub-
voxel water pool, ETL is the echo train length, and NT2 is 
the number of cellular components. Extraction of w is 
typically done by solving an RNNLS minimization prob-
lem of the form:

	
argmin

w

1
2
Dw − s 2

2 + λTikh w 2
2 + λL1 w 1, such that wi ≥ 0,

	
(2)

where λTikh  , λL1≥ 0 are Tikhonov and L1 regularization 
terms. Tikhonov regularization is added to favor smoother 
solutions, while the L1 regularization is added to promote 
sparse solutions. Due to the large space of possible mcT2 
combinations, more than one solution can match each 
experimental signal. Adding to that the ambiguity caused 
by noise, solutions of this system of equations tend to be 
highly unstable and, in many cases, converge toward a 
wrong local minimum.

2.2.  Data-driven EMC-based mcT2 analysis

In order to address the inherent ill-posed nature of the 
inverse problem, we propose the implementation of a 
data-driven preprocessing stage aimed at identifying dis-
tinctive mcT2 motifs that best encapsulate the character-
istics of the WM tissue. This preprocessing step is carried 
out prior to the optimization process expressed in Eq. (2). 
The underlying principle of this approach is based on one 
key assumption: that within the WM, there exists a finite 
set of microstructural configurations, each of which cor-
responds to a specific mcT2 spectrum. A flowchart of the 
algorithm is presented in Figure 1.

The input for the data-driven algorithm consists of 
MESE data, the exact pulse sequence scheme and 
acquisition parameters, and a WM mask. The algorithm 
consists of eight sequential steps. Step #1 involves the 
creation of a single-T2 EMC dictionary of signals, span-
ning NT2

 logarithmically spaced T2 values ranging from 

Fig. 1.  Data-driven algorithm flowchart. Input for 
the algorithm is marked with dashed frames. (Step 1) 
Generating single-T2 dictionary using the EMC algorithm. 
(Step 2) Creating mcT2 dictionary by combining 
single-T2 signals with different fractions. (Step 3) Signal 
correction is performed for compensating for transmit 
field inhomogeneities. (Steps 4, 5) Statistical correlation 
is computed between each dictionary element ( i and 
signal sj  and added with entropy regularization to prevent 
overfitting. (Steps 6, 7) The result is then normalized and 
summed across all voxels to produce a global score. (Step 
8) Select the basis elements with the highest scores while 
maximizing the orthogonality between motifs.

10 to 800 ms. In step #2, a theoretical dictionary of all 
possible mcT2 motifs is constructed by combining 
series of NComp single-T2 signals, each with a relative 
fraction fn ∈ 0..1[ ] using a fraction resolution of 
Δf = 1/Nfrac, where Nfrac  is the number of discrete values 
that fn can assume. Each simulated mcT2 dictionary ele-
ment ( is expressed as

	
( =

n=1

Ncomp

∑ fn ⋅dn       such that 
n=1

NComp

∑ fn = 1,
	

(3)

where Ncomp is the number of compartments. Impor-
tantly, the number of compartments in the theoretical  
dictionary does not limit the number of compartments in 
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the final mcT2 spectrum for each voxel, which will com-
prise a linear combination of mcT2 motifs. An important 
substage of step #2 involves pruning nonphysiological 
configurations from the mcT2 dictionary, including mcT2 
motifs that lack a short T2 component (<40 ms); motifs 
whose short T2 component fraction exceeds 30%; and 
motifs that correspond to a single-T2 value that is outside 
the range of T2 values that exist in the WM region. This 
single-T2 value of an mcT2 motif is calculated by fitting 
the motif’s signal decay curve to a dictionary of single-T2 
signals. Stage #3 consists of correcting for transmit field 
(B1

+) inhomogeneities, and is elaborated in Section 2.3.
In steps #4–5, statistical correlation is performed 

between each dictionary element ( i and every voxel signal 
sj , by calculating a “cost” α i, j, defined as the L2 norm dif-
ference between each pair. A regularization term β is added 
to this cost value to penalize motifs with high entropy, 
retrieving the simplest spectral features and reducing over-
fitting (L. Chen et al., 2002; Widjaja & Garland, 2005):

	 κ i, j = α i, j + β i 	 (4)

such that

	 α i, j = ( i−sj 2 	 (5)

	
β i = λEnt

n=1

Ncomp

∑ − fi,n log fi,n( ),
	

(6)

where fi,n is defined according to Eq. (3). Prior to selecting 
the final basis set of motifs, we define a similarity criterion 
between a dictionary element (( i ) and voxel signal (sj). 
This is used to apply cost clipping (Taal et al., 2011) for the 
purpose of reducing potential bias from motifs which are 
significantly different from the experimental data. The sim-
ilarity threshold is denoted as ξMV  and defined as

	 ξMV ! δMV
2 ⋅ETL, 	 (7)

where δMV  is set empirically. Each ( i  and sj pair is then 
considered similar if it obeys:

	 α i, j < ξMV . 	 (8)

In this process, α i, j  is constrained by α i, j →min(α i, j,
5ξMV), and κ i, j is updated accordingly. In step #6, the κ i, j  
scales are normalized to [0…1] range according to

	

κ̂ i, j = 1−
κ i, j

max
j
(κ i, j)

.

	
(9)

In step #7, the scores κ̂ i, j  of each dictionary element ( i  
are summed across all voxels to yield a global score Κ i  
that expresses how well each motif matches the examined 
tissue:

	
Κ i =

j=1

Nvoxels

∑ κ̂ i, j.
	

(10)

Finally, in step #8, a finite subset of motifs is selected, 
which will be used to separate each voxel’s signal into its 
underlying components. The selection process is based 
on two criteria: the highest Κ i  score and a pseudo-
orthogonality constraint which maximizes the differ-
ences between motifs in the final subset. A full 
step-by-step description of the selection process is 
detailed in Algorithm 1.

Algorithm 1

Input:

(1,(2, … ,(Nmotifs{ } Set of all mcT2 motifs sorted 
according to their score Κ i

T2
((1),T2

((2) ,…, T2
((Nmotifs

){ } Single-T2 value, corresponding to 
each motif

V! Set of all the voxels in the ana-
lyzed ROI

Vi = j|ai, j < ξMV{ } Group of voxels that are similar 
to motif i (see Eq. (8))

Output:

D A set of selected mcT2 motifs

Algorithm:

1: D =∅
2: D→D∪(1

3: V!→ V! \V1

Initialize D to be an empty set.
Add the mcT2 motif with the 
highest score to the set of  
selected motifs.
Remove from the group of all 
voxels V!, voxels that are similar 
to motif (1

4: for i = 2, 3…,Nmotifs: Loop over all remaining mcT2 
motifs, sorted according to their 
score Κ i

5:  if T2
( i( )  ∉T2 D{ }: Check whether motif i does not 

have the same single-T2 value as 
any of the other motifs already 
in D

6: if V!∩ Vi ≠ ∅ : Check whether this motif holds 
new information, i.e., is it similar 
to voxels that were not yet ac-
counted for by motifs already in D

7:  D→D∪( i Add the motif to the set of  
selected motifs

8: V!→ V! \Vi Remove from the group of all 
voxels V!, voxels that are similar 
to motif i

9:  end if
10:  end if
11: if V! = ∅ If all voxels have been accounted 

for (i.e., V!  is an empty set)
12:  break for loop Break for loop and terminate the 

algorithm
13:  end if
14: end for
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After selecting the final set of motifs D, the signal is 
modeled as a linear combination of mcT2 signals:

	
s =

i=1

D

∑Wi ⋅( i=DW,
	

(11)

where s∈RETL  is the experimental signal, W∈RD  is the 
unknown vector of weights of the elements in D, and |D | 
is the number of elements in D. The mcT2 fitting problem 
now converts to solving for the unknown vector W  
through a standard RNNLS optimization procedure:

	
argmin
W

1
2
DW − s 2

2 + λTik W 2
2 + λL1 W 1, such that Wi ≥ 0, 

	
(12)

which is similar to Eq. (2), albeit with a modified encoding 
operator that has been learned from the tissue being ana-
lyzed. Notably, the result obtained from Eq. (12) is W, 
although our objective is to derive vector w. Recalling 
that each motif is defined by a weights vector f  (Eq. (3)), 
and denoting the matrix of all weights as F∈RNT2

× D  , the 
final T2 spectrum at each voxel will be

	 w = FW. 	 (13)

Finally, MWF values are calculated from the T2 spec-
trum of each voxel as the relative energy between 0 and 
40 ms, and the energy of the entire spectrum.

2.3.  Correcting for transmit (B1
+) field 

inhomogeneities

The extensive utilization of RF refocusing pulses in MESE 
signals can introduce bias due to transmit field inhomoge-
neities. To address this, the data-driven algorithm has 
been added with a preprocessing stage designed to esti-
mate the B1

+ profile and subsequently correct the experi-
mental data. As each theoretical EMC decay curve di  
depends on both T2 and B1

+, the same holds for each mcT2 
motif which can now be expressed as ((B1

+). Thus, each 
motif ( transitions from a 1D to 2D by adding a B1

+ dimen-
sion, discretized across NB1

+ values in the range 80–120% 
(where 100% represents a fully homogeneous field).

( B1
+( ) =

n=1

Ncomp

∑ fn ⋅dn(B1
+ )     such that 

n=1

NComp

∑ fn = 1.
�

(14)

The B1
+ correction procedure involves three stages. 

First, the initial B1
+ profile is calculated for each voxel j by 

finding the dictionary motif ((B1
+) that has the lowest L2-

norm difference to the experimental signal sj. This is 
done using an exhaustive search over all dictionary ele-

ments and produces an initial solution for the transmit 
field map B1, n=0

+ . In the second stage, the field map 
undergoes iterative spatial smoothing within a region sur-
rounding each voxel by minimizing the following cost 
function:

	
B1,n+1
+ ( j ) = argmin

B1
+

( B1
+( )− sj

2
+ µ
Nk r∈Nk

∑ B1
+ − B1,n

+ (r )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.
	

(15)

Here, B1,n
+  and B1,n+1

+  denote the transmit field profile at 
iteration n and n + 1, respectively, and B1

+  denotes the 
simulated range of NB1

+  transmit field profile values. The 
cost function employed in this optimization consists of 
two components: first, a likelihood term that is responsi-
ble for finding the B1

+ value that best aligns with the data 
from voxel sj ; and second, a prior that imposes spatial 
smoothness within a 2D kernel using L1 norm. The utiliza-
tion of the L1 norm in this process has been shown to 
enhance resilience against noise and outliers across var-
ious signal processing applications (Brooks et al., 2013; 
Markopoulos et al., 2014). μ represents the regularization 
weight, Nk  denotes all voxels within the 2D kernel sur-
rounding voxel sj , and Nk  is the number of voxels in  
Nk. The iterative process is terminated either when there 
is no change in the B1

+ value between iterations or when 
the number of iterations exceeds the predefined limit of 
Niter = 200. The resulting transmit field map is then 
denoted as B1, opt

+ .
Finally, the B1, opt

+  map is used to correct signal sj  in 
each voxel. Taking the mcT2 motif with the optimal B1

+ 
value ((B1,opt

+ ) , the corrected signal sj,cor  is calculated as

	
sj,cor t( ) = sj t( ) ⋅ ( t( )

( B1, opt
+ ,t( ) , 	

(16)

where ( denotes the “homogeneous” mcT2 motif, corre-
sponding to B1

+  value of 100%.

3.  METHODS

3.1.  Validation on a numerical phantom

To evaluate the suggested method, numeric simulations 
of a 2D MESE protocol were performed on a Shepp–
Logan phantom, using matrix size = 90 x 90, ETL = 11, 
echo time (TE) = 12 ms, interecho spacing = 12 ms, and 
bandwidth = 200 Hz/Px. Simulations were repeated for 
five tissue types, varying by the number of compartments 
(NComp= 1,2,3), the myelin fractions, the relaxation times, 
and relative fractions of the intra-/extracellular water 
pools, and the B1

+ field profile. Detailed description of 
simulated mcT2 configurations is delineated in Figure S1.
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Table 1.  List of optimal parameters for the conventional and data-driven approaches.

Parameter Symbol

Conventional Data driven

Numerical 
phantom

Physical 
phatnom In vivo

Numerical 
phantom

Physical 
phatnom In vivo

Number of single-T2 values NT2 200 200 200 200 200 200
Range of single-T2 values 10…800 5…800 10…800 10…800 5…800 10…800
Fraction resolution ∆f — — — 0.05 0.05 0.05
Short T2 fraction limit [%] — — — 30 30 30
Similarity parameter δMV — — — 0.01…0.02* 0.008 0.01
Entropy regularization λEnt — — — 0.001 0.05 0.001
Tikhonov regularization λTikh 0.1 0.0005 0.1 0.001 0.0005 0.001
L1 regularization λL1 0.01 0.01 0.01 0.01 0.01 0.01
Regularization for B1

+ correction μ 1 None 1 1 None 1

*Depends on SNR.

To benchmark the myelin mapping algorithm across 
different SNRs, Rician noise was introduced to the simu-
lated signals at SNRs of 500, 300, 200, 100, and 50, 
defined as the ratio between the first echo amplitude and 
the standard deviation of the noise. mcT2 fitting was per-
formed according to the algorithm described in Figure 1, 
starting with generating an mcT2 dictionary. The number 
of possible configurations (NmcT2

) grows exponentially 
with NT2

, Nfrac, and NB1
+ , which are used to construct the 

dictionary, and can be calculated using combinatorics. 
For example, for a choice of two compartments, this 
number will be

NmcT2
=

NT 2

1

⎛

⎝
⎜

⎞

⎠
⎟ +

NT 2

2

⎛

⎝
⎜

⎞

⎠
⎟ Nfrac − 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅NB1

+ ,
�

(17)

which comes up to 3,404,700 elements for NT2
= 200, 

Δf = 0.05, NB1
+ = 9 (B1

+ = 80 : 5 :120%). The regularization 
weights λTikh, λL1, and λent were determined through an 
exhaustive search in the range of 0–10, optimized for 
maximal MWF accuracy. The importance of choosing the 
right λEnt is further demonstrated in Figures S2 and S3, 
for SNRs of 500 and 100, respectively.

The minimization problem in Eq. (12) was solved using 
MATLAB’s (Mathworks, version 2022b) Quadratic pro-
gramming (see Appendix A for detailed description). To 
assess the algorithm’s stability, mean absolute error was 
computed as a function of λTikh and λL1 values, for the five 
tissue types in the numeric phantom. Optimal recon-
struction parameters for the conventional and data-
driven approaches, i.e., those which yielded the highest 
accuracy, are detailed in the 3rd and 6th columns of 
Table 1, respectively.

3.2.  Validation on a physical phantom

An mcT2 phantom was prepared using MnCl2 solutions at 
concentrations of 0.11, 0.15, and 0.6 mM, producing T2 

relaxation times of 80, 60, and 20 ms, respectively. Nine 
tubes, each with a volume of 70 ml, were used as con-
tainers of a physical multicompartment phantom, featur-
ing three distinct internal compartments. The first 
compartment consisted of background solution with T2 
of 80 ms. Varying number of 3 and 5 mm capillary tubes 
were then inserted into the container tubes, filled with 60 
and 20  ms solutions, and serving as the 2nd and 3rd 
compartments. This resulted in nine relative fractions of 
the short T2 (20  ms) compartment, equal to 0%, 0%, 
3.8%, 7.1%, 11.1%, 14.3%, 18.5%, 21.7%, and 26.2%. 
Full description of the nine different multicompartment 
configurations is delineated in Table S1.

MRI scans were conducted separately for each tube 
using a 2D MESE protocol with the following parameters: 
TE = 7.9, repetition time (TR) = 5000 ms, interecho spac-
ing = 7.9 ms, ETL = 24, FOV = 750 x 750 mm2, matrix 
size = 30 x 30, slice thickness = 3 mm, NSlices = 10, band-
width = 399 Hz/Px, and total scan time of Tacq = 2:45 min. 
A key aspect of these scans is the huge voxel 
size  =  25  x  25  mm2, ensuring that each tube was fully 
encapsulated within a single voxel. This unique setup 
enabled the generation of genuine, experimental mcT2 
signals, with known ground truth fractions of the short T2 
component. To generate a large number of mcT2 signals, 
each low-resolution scan was repeated four times with 
varying slice offsets. Lastly, to assess the interscan 
repeatability of the fitting process, two of the tubes hav-
ing fractions of 7.1% and 18.5% were scanned twice, 
resulting in an overall number of 440 separate signals (10 
slices x 4 offsets x 11 tubes).

Postprocessing and statistical analysis of the phan-
tom data included the determination of ground truth 
MWF values based on the relative area of the short T2 
tubes, derived directly from the phantom geometry. The 
data-driven analysis utilized data from all tubes, creating 
a diverse dataset, with a range of single-T2 values that is 
similar to what is expected in vivo. Mean and standard 
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deviation (SD) of the MWF were calculated for each tube, 
and Pearson correlation and root mean square difference 
(RMSD) were computed to assess the agreement with 
the ground truth MWF values. Interscan repeatability was 
assessed by calculating RMSD and correlation coeffi-
cient, and performing Bland–Altman analysis for the two 
tubes which were scanned twice. Detailed list of all post-
processing parameters which gave the highest accuracy 
for both approaches is outlined in Table 1, 4th and 7th 
columns.

3.3.  MWF mapping of healthy subjects

A group of 26 healthy subjects (39.2 ± 5.5 y/o, 15 males) 
was scanned on a 3T Prisma MRI scanner (Siemens 
Healthineers), after signing an informed consent and 
under Helsinki approval by Sheba Medical Center 
(3933-17-SMC). MRI scans included a 2D MESE protocol 
with TE/TR = 12/5000 ms, interecho spacing = 12 ms, 
ETL = 11, FOV = 192 x 156 mm2, matrix size = 192 x 156, 
slice thickness  =  3  mm, Nslices = 32, acquisition band-
width = 200 Hz/Px, GRAPPA acceleration factor = 2, and 
Tacq = 7:35 min. 3D T1-weighted magnetization prepared 
two rapid gradient echo (MP2RAGE) data were collected 
for brain segmentations using TE/TR  =  3.5/4000  ms, 
TI  =  732 and 2220  ms, FOV  =  224  x  168  mm2, matrix 
size = 224 x 168, slice thickness = 1 mm, Nslices = 192, and 
Tacq = 6:24 min.

Prior to MWF fitting, MESE data were denoised to 
enhance SNR using the MP-PCA algorithm (Stern et al., 
2022), following a previous study that demonstrated the 
benefits of denoising for multicomponent relaxometry fit-
ting (Does et al., 2019). Extraction of WM mask was per-
formed on the MPRAGE images, followed by registration 
to MESE image space using Freesurfer tools (Fischl, 
2012; Reuter et  al., 2010). MWF maps were generated 
using the conventional and data-driven techniques, using 
the postprocessing parameters detailed in Table  1, 5th 
and 8th columns, and a fixed kernel size of 15 x 15 mm2 
for B1

+ correction. Single-T2 maps were also calculated 
based on the mcT2 spectrum within each voxel by (i) gen-
erating a single-T2 signal using a linear combination of all 
T2 components (see Eq. (11)), and (ii) performing single-T2 
fitting using the EMC algorithm (Radunsky et al., 2021). 
Reproducibility of the data-driven MWF fitting algorithm 
was tested using scan–rescan available data from 22 out 
of the 26 healthy subjects. The time difference between 
the two scans was 30 ± 13 days.

3.4.  MWF mapping in people with MS

A cohort of 29 individuals with relapsing–remitting MS 
(44.2 ± 11.8 y/o, 9 males) was scanned on a 3T scanner 

at Sheba Medical Center after providing informed con-
sent and under Helsinki approval (6923-20-SMC). MRI 
scan included a 2D MESE protocol [TE/TR = 12/4600 ms, 
interecho spacing  =  12  ms, ETL  =  11, FOV  = 192  x 
220 mm2, matrix size = 112 x 128, slice thickness = 3 mm, 
Nslices = 33, GRAPPA acceleration factor = 2, bandwidth = 
200 Hz/Px, Tacq = 5:15 min]; 3D T1w MPRAGE [TE/TR = 
2.3/1800 ms, TI = 900 ms, FOV = 256 x 256 mm2, matrix 
size = 256 x 256, slice thickness = 1 mm, Nslices = 176,  
Tacq = 4:35  min]; fluid attenuated inversion recovery 
(FLAIR) [TE/TR = 83/9000 ms, TI = 2500 ms, FOV = 240 x 
195 mm2, matrix size = 320 x 260, slice thickness = 2 mm, 
Nslices = 64, total scan time = 4:30 min]. MWF maps were 
generated using the same parameters as for the healthy 
subjects. T2 maps were calculated from the mcT2 spec-
trum at each voxel, following a procedure described 
above for the healthy subjects.

3.5.  Statistical analysis

Mean and SD of MWF values were calculated using the 
data-driven approach for six manually segmented 2D 
normal-appearing WM (NAWM) regions. These included 
the genu of the corpus callosum (GCC), splenium of the 
corpus callosum (SCC), frontal lobe, temporal lobe, 
occipital lobe, and the entire WM (segmented automati-
cally using Freesurfer software). Illustration of the seg-
mented ROIs is shown in Figure  S4. Scan–rescan 
measurements were assessed for repeatability by calcu-
lating correlation coefficient and performing Bland–
Altman analysis.

To compare MWF values between healthy subjects 
and people with MS, a two tailed unpaired t-test with sig-
nificance level of αsignificance = 0.001 was performed. Bon-
ferroni multiple comparisons correction was applied by 
dividing αsignificance by the number of tests, which was 6 in 
this case. Classification of people with MS vs. healthy 
controls was performed based on MWF values at each 
normal-appearing region, and receiver operating charac-
teristic (ROC) curves were generated for each ROI, fol-
lowed by calculating the area under the curve (AUC) as a 
metric of classification performance.

4.  RESULTS

The performance of the data-driven fitting of numerical 
phantom data is shown in Figure 2 along with a compar-
ison with the conventional RNNLS approach. Mean 
absolute errors of 0.2%, 0.5%, 0.7%, 1.2%, and 1.8% 
were produced by the data-driven approach for SNRs of 
500, 300, 200, 100, and 50, respectively. Conventional 
fitting, in contrast, showed consistently higher mean 
absolute errors of 2.4%, 2.5%, 2.5%, 2.8%, and 3.7% 
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Fig. 2.  MWF mapping in a numerical phantom. Ground truth MWF and B1
+ maps are presented in the left panels. Right 

panels illustrate the performance of conventional and data-driven fitting approaches at different SNRs. Figure shows fitted 
MWF maps, absolute error maps, and reconstructed B1

+ profiles.

Fig. 3.  Stability of the conventional and data-driven MWF fitting approaches showing the mean absolute error (in %) as 
function of L1 and Tikhonov regularization weights for numerical phantom across different SNRs.

across the tested SNR values. B1
+ bias field correction 

using the data-driven approach also showed high cor-
relation to ground truth values with mean absolute errors 
of 0.1%, 0.1%, and 0.4% for SNRs > 100, while the con-
ventional approach struggled to estimate B1

+ accurately 
and produced mean absolute errors of 6.0%, 5.1%, and 
4.7%. At SNRs ≤ 100, higher deviations were observed 
for the B1

+ maps using both approaches with mean abso-

lute errors of 2.8% and 5.5% for the data-driven tech-
nique and 5.3% and 6.1% for the conventional fitting at 
SNRs 100 and 50, respectively.

In Figure 3, stability maps are provided, depicting con-
ventional and data-driven fitting performance across λTikh 
and λL1 regularization values and different SNRs. The data-
driven approach exhibits consistently small mean absolute 
errors over a wide range of L1 and Tikhonov regularization 
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weights for all tested SNRs. In contrast, the conventional 
approach demonstrates large mean absolute errors 
throughout the entire range of regularization settings.

The design of the three-compartment physical phan-
tom is shown in Figure 4A-B. Fitted MWF versus ground 
truth fractions using the data-driven technique are shown 

in Figure  4C, exhibiting high linear correlation (r) and 
small absolute error of 0.83 ± 0.51%. Similar analysis of 
conventional mcT2 fitting is shown in Figure S5.

Scan–rescan analysis of the physical phantom is 
presented in Figure 5A-B for two tubes with MWF frac-
tions of 7% and 18.5%. The data-driven approach 

Fig. 4.  Sagittal (A) and axial (B) illustrations of the unique multicompartment phantom design used in the study. (C) 
Correlation between data-driven and ground truth MWF values. Intratube variability (SD) of MWF values is shown as error 
bars for each tube. Black line denotes the best fit line. Correlation value of r = 0.99, RMSD value of 0.95%, and mean 
absolute error of 0.83 ± 0.51% were achieved between the estimated and ground truth MWF values.

Fig. 5.  Scan–rescan analysis and Bland–Altman plot for MWF values derived using the data-driven approach for two 
tubes containing (A, C) 7.1% and (B, D) 18.5%.
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Fig. 6.  T2-weighted images, T2 maps, and MWF maps for 
three healthy subjects, generated using the data-driven 
fitting approach.

Fig. 7.  (A) Scan–rescan correlation analysis and (B) 
Bland–Altman plot for in vivo MWF values derived using the 
data-driven algorithm.

exhibits small RMSD of 0.76% and 0.22% for the 7% 
and 18.5% tubes, respectively. Further statistical anal-
ysis is presented using the Bland–Altman plots in Fig-
ure  5C-D, demonstrating a good agreement between 
the scans with difference of 0.40  ±  0.66% and 
0.15  ±  0.16% for the 7% and 18.5% tubes, respec-
tively. Similar analysis of conventional mcT2 fitting is 
shown in Figure S6.

T2-weighted images, T2 maps, and MWF maps from 
three representative healthy subjects are presented in 
Figure 6. No correlation was observed between the MWF 
and T2 values, i.e., higher MWF values do not necessarily 
indicate lower T2 values as can be seen in the GCC and 
SCC regions. In vivo repeatability of MWF maps was 
assessed using scan–rescan data from 22 healthy sub-
jects, summarized in the Bland–Altman and correlation 
plots in Figure7. The data-driven approach yielded realis-
tic MWF values and demonstrated good repeatability, 
with a correlation coefficient of 0.91 and RMSD of 1.08%. 
Similar analysis of conventional mcT2 fitting for healthy 
subjects is shown in Figures S7-S8.

Figure  8 shows FLAIR images, T2 maps, and MWF 
maps of three representative people with MS. The advan-
tage of the data-driven approach is clearly demonstrated 
in this figure, showing how quantitative maps reveal sub-
tle changes which are indicative of inflammation and 
demyelination within NAWM, and which are not visible in 

the qualitative FLAIR images. Similar quantitative maps 
produced using the conventional mcT2 fitting are shown 
in Figure S9.

MWF values for specific brain ROIs were extracted for 
both healthy subjects and people with MS, and then used 
to classify subjects between these groups. Box plots of 
the extracted values are illustrated in Figure 9, along with 
classification ROC curves. The data-driven approach 
produced a significant difference (p-value  <  0.0001) in 
mean MWF between healthy subjects and people with 
MS across all ROIs, with a relative reduction in MWF 
ranging from 20% to 38%. Full numeric values per ROI 
are given in Table S2. The data-driven approach yielded 
consistently higher AUC for all tested regions. Similar 
analysis using the conventional mcT2 fitting is shown in 
Figure S10 and Table S3.
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5.  DISCUSSION

The significant ambiguity within mcT2 search space poses 
a substantial obstacle for achieving reliable MWF values. 
This study introduces several improvements to a recently 
developed MWI technique based on mcT2 analysis of 
MESE data, with corrections for transmit field inhomoge-
neities. The method begins by identifying global mcT2 
motifs of the entire tissue, which are then used for local-
ized signal analysis at each voxel, while accounting for 
local variations in the B1

+  field. As an initial step, a compre-
hensive dictionary of mcT2 signals is generated, tailored to 
match the precise pulse-sequence parameters of the 
MESE protocol. Extraction of specific pulse-sequence 
parameters is necessary in order to use the EMC model of 
MESE signals, which stands at the basis of the data-driven 
MWF mapping algorithm. On Siemens scanners, this is 
done via the IDEA software. Accessing these parameters 
requires proprietary scanner code and a research agree-
ment with the corresponding vendor.

The identification of tissue-specific mcT2 motifs sig-
nificantly reduces the number of potential solutions, 
thereby alleviating the intrinsic ill-posed nature of mcT2 
analysis. The primary objective of this stage is to keep 
the most relevant motifs—either having good correlation 
to a large number of voxels or very good correlation with 
a limited number of voxels, like lesions. The ensuing set 
of motifs constitute a pseudo-orthogonal basis set with 

maximum information about the tissue. This strategy mit-
igates the risk of converging toward less physiological 
solutions, even if they might demonstrate higher fitting 
accuracy at the voxel level. Although this paper primarily 
focused on 2D MESE sequences which can be run at 
clinical scan times of 5–8 minutes (depending on image 
resolution), the data-driven approach can also be adapted 
for use with 3D MESE sequences using dictionaries of 
exponentially decaying signals. Recently, another data-
driven approach has been suggested (Piredda et  al., 
2022), where different regression models are trained 
using single relaxometry measurements (such as single 
T1 and single T2) to predict MWF values. While this 
approach focuses on establishing a generalized model 
for MWF prediction across acquired data, the method 
presented herein is based on learning specific character-
istics of the WM of each individual. Similarly, the pro-
posed approach has the potential to extend its 
applicability by conducting the data-driven analysis on a 
collective group of individuals. However, such generaliza-
tion should be approached cautiously, considering vari-
ous factors such as age, gender, and other cofactors that 
may affect myelination patterns.

The number of compartments used to generate the 
simulated mcT2 dictionary may be either two, three, or 
even higher if sufficient computational resources are 
available. Here, we conducted tests with both two- and 
three-compartment dictionaries and determined that a 
two-compartment dictionary is sufficient and does not 
introduce higher errors in the measured MWF, while 
allowing to perform analysis on a standard PC. Impor-
tantly, the number of compartments in the mcT2 dictio-
nary does not impose any constraints on the final number 
of components in the T2 spectrum, as there is no inherent 
limit on the number of mcT2 motifs used to represent the 
signal in each voxel (see Eq. (11)).

The range of single-T2 values used to filter nonphysio-
logical mcT2 motifs can exhibit variations among subjects 
and may be wider in tissues containing pathologies such 
as MS lesions. It is, therefore, crucial that the range and 
dynamic resolution of T2 values in D be sufficiently dense 
within the physiological range of T2 values to construct an 
mcT2 dictionary D that will faithfully characterize the tis-
sue. Various choices of NT2 have been reported in the lit-
erature (Kumar et al., 2018; Nagtegaal, Koken, Amthor, 
De Bresser, et al., 2020; Prasloski, Mädler, et al., 2012; 
Whittall & MacKay, 1989). One study reported that myelin 
quantification remains unaffected by the choice of NT2 
when it is sufficiently large, while a small NT2

 can result in 
substantial variations in MWF values (Kumar et al., 2016, 
2018). In the current study, we chose NT2

 of 200 to main-
tain consistency with the number of single-T2 values used 

Fig. 8.  FLAIR images, T2 maps, and MWF maps for three 
people with MS fitted using the data-driven approach.
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in creating the mcT2 dictionary. The ability to generate a 
large mcT2 dictionary in our study was made feasible by 
implementing a subsequent dilution process. This crucial 
step served to tailor the mcT2 basis functions to match 
the physiological mcT2 configurations found in the tissue 
and avoid erroneous combinations that could potentially 
arise due to noise.

The numerical results demonstrate that the data-
driven algorithm can produce consistently accurate 
results, even in scenarios with substantial variations in 
the range of T2 values, short T2 fractions, and high B1

+  
inhomogeneity levels. The numerical phantom was 
designed to mimic physiological MWF values, SNR lev-
els, and matrix sizes matching in vivo scan settings. 
Accordingly, similar regularizations were applied to the 
numerical phantom and in vivo data. In this study, B1

+  
estimation relied on MESE data rather than a separate B1

+ 

mapping scan. Recent study showed that acquiring an 
independent B1

+ map can improve the MWF results 
(Mehdizadeh & Wilman, 2022). Nevertheless, the data-
driven algorithm was able to produce relatively accurate 
B1
+ maps for all SNR values compared with the conven-

tional approach, contributing to the accuracy of the final 
MWF maps. Further investigation is warranted to com-
pare the reconstructed B1

+ maps using the data-driven 
approach with independently measured B1

+ maps. 
Another important conclusion, demonstrated in the 
numeric simulation, was that the values of δMV , and con-
sequently ξMV , should scale with SNR as higher noise 
levels require less stringent similarity criterion between 
simulated and experimental signals. Lastly, the stability 
maps presented in this study highlight the data-driven 
algorithm’s robustness across a range of L1 and Tikhonov 
regularization weights.

Fig. 9.  Box plots of MWF values for six WM ROIs, comparing healthy controls (HC) and people with MS. Statistically 
significant separation is achieved between the two populations for all tested ROIs (*** p-value < 0.0001) after correcting 
for multiple comparisons. ROC curves are shown on the 2nd and 4th columns, calculated based on mean MWF values in 
NAWM only (i.e., excluding lesions). (A-B) Genu of corpus callosum (GCC). (C-D) Splenium of corpus callosum (SCC). (E-F) 
Frontal (Front.) lobe. (G-H) Occipital (Occ.) lobe. (I-J) Temporal (Temp.) lobe. (K-L) All NAWM.
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Findings from experiments conducted on the physical 
phantom provide valuable insights into the performance 
of the data-driven algorithm in a controlled setting. The 
unique design of the phantom used in this study provided 
valuable ground truth reference. Despite certain model 
limitations, such as the absence of exchange and diffu-
sion effects, this phantom offered a genuine benchmark 
to assess the data-driven algorithm’s accuracy. The 
results demonstrate the data-driven algorithm’s reliability 
in terms of both accuracy and precision, and across a 
wide range of MWF values. Scan–rescan experiments 
further emphasized the strengths of the data-driven 
approach, revealing high repeatability, exhibited as low 
interscan RMSD in comparison with conventional pro-
cessing. It is worth noting that different regularization 
parameters were chosen for the physical and numerical 
phantom data. This adjustment was necessary due to the 
variations in scan parameters and physical properties of 
each phantom, such as voxel size and the distribution of 
T2 values. These differences were carefully considered to 
ensure accurate evaluations.

The data-driven myelin mapping tool exhibited high 
reproducibility also in vivo. Repeatability tests demon-
strated high correlation and small RMSD, which aligns 
with previous studies (Levesque et  al., 2010; Meyers 
et al., 2009). Examining MWF and T2 maps versus the T2-
weighted images from healthy subjects indicates that the 
intensity of qualitative T2-weighted images cannot be 
used as an accurate marker of myelin content, seeing as 
the intensity in qualitative images depends not only on 
myelin content, but also on other factors such as the total 
water content, macromolecular content, pathology, as 
well as on B1

+ inhomogeneities. Thus, from a radiological 
point of view, changes in T2 weighting correspond more 
tightly with the tissue’s single T2, rather than MWF values.

Considering the comparison between the healthy sub-
jects and people living with MS, data-driven MWF values 
were significantly different between healthy subjects and 
people with MS across all assayed NAWM ROIs, even 
after stringent correction for multiple comparisons. High 
AUC was furthermore achieved for all ROIs, indicating 
the potential of data-driven MWF values as a biomarker 
for MS. These findings align with previous studies (Faizy 
et al., 2016; Laule & Moore, 2018) and indicate a consis-
tent reduction in MWF values in people with MS in com-
parison with healthy subjects. In contrast to the phantom 
experiments, in vivo scans lack ground truth MWF val-
ues. The processing of in vivo data thus used regulariza-
tion weights derived from the numerical phantom 
experiments, as they shared the same scan settings.

MWF values were estimated in this study also using a 
conventional approach, which differs from the data-driven 
approach by using a theoretical dictionary of single-T2 sig-

nals, rather than an mcT2 dictionary of motifs which were 
learnt from the examined tissue. Corresponding MWF val-
ues were less accurate and precise for all assayed models. 
Numerical phantom results illustrated the conventional 
approach’s inability to produce accurate values, exhibiting 
substantial mean absolute error across the entire range of 
regularization settings. Conventional analysis of the scan–
rescan data of the physical phantom (Fig. S6) showcased 
a wider spread of values, indicating increased sensitivity to 
random interscan signal variations and to noise vis-à-vis 
data-driven fitting. In the in vivo repeatability test (Fig. S8), 
the conventional approach exhibited similar correlation 
coefficient to the data-driven approach, but significantly 
higher MWF values across ROIs, similar to findings from 
the numerical simulations. Notably, this overestimation in 
healthy subjects persisted in people with MS as well 
(Fig. S9). Furthermore, in specific regions such as the fron-
tal lobe and GCC, the conventional approach generated 
high AUC values albeit in an opposite direction to the nat-
ural progression of MS, showing higher MWF values for 
people with MS vs. controls (Fig. S10 and Table S3).

The primary cause of this overestimation can be 
attributed to the notably high Tikhonov regularization 
value, which was larger by two orders of magnitude com-
pared with the data-driven approach. As described in Eq. 
(2), a higher Tikhonov regularization leads to a smoother 
spectrum, thereby necessitating the inclusion of more 
spectral components in the optimization process. Nota-
bly, conventional processing incorporated a broader 
range of T2 values compared with the final set of selected 
motifs when using data-driven processing. It is import-
ant, however, to note that both data-driven and nondata-
driven approaches produced identical T2 maps, indicating 
that the center of mass of the spectra remained 
unchanged. The usage of a large Tikhonov regularization 
value causes selection of longer T2 values, which was 
counteracted by increased energy in the short T2 range. 
Utilizing a smaller regularization value (than the one which 
yielded the best results in the numerical simulations) 
would result in a significantly wider spread and lower 
quality in scan–rescan outcomes (result not shown).

Notwithstanding the successful results obtained using 
data-driven fitting, the current study has several limitations 
which should be considered. Firstly, the absence of ground 
truth in vivo limits one’s ability to validate the calculated 
MWF values. While correlations with histology can pro-
vided some insights into microstructural features (Laule 
et al., 2006), their applicability is constrained by postmor-
tem tissue changes and the inherent variability in proce-
dures such as fixation, slicing, and staining. Secondly, our 
proposed method, like other RNNLS-based approaches, 
operates under the assumption of a slow exchange regime, 
where the intercompartmental exchange is slow relative to 
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the acquisition time (TE). Although previous reports sug-
gested that exchange plays a minor role in MWF (Kalantari 
et  al., 2011), there are also claims that the exchange of 
water between microenvironments may bias MWF values 
(Levesque & Pike, 2009), requiring to expand the tissue 
model to incorporate exchange, e.g., by using Bloch–
McConnell equations (Harkins et al., 2012).

Thirdly, in our experiments, maximal TE of 132 ms was 
used. Optimal estimation of the T2 values of slow relaxing 
intra-/extracellular water pools would, however, require 
longer echo trains, which are not feasible in clinical set-
tings due to the increase in specific absorption rate (SAR) 
caused by the addition of refocusing pulses. Further-
more, longer ETLs would limit the number of slices that 
can be acquired within one TR, once again requiring the 
use of longer TRs and longer scan time. Requiring a cov-
erage of at least 9 cm within clinically feasible scan times 
thus forces the use of maximal TEs of 120–150  ms, 
thereby trading off some of the encoding quality of the 
longer T2 components. Nevertheless, this constraint is 
less limiting when mapping MWF values seeing as we are 
mostly interested in the short T2 component (T2 < 40 ms), 
while trading off some of the accuracy in the estimation 
of the long T2 components should have lower influence 
on the resulting MWF values.

It is important to note that MWF only serves as a proxy 
for myelin content, while reduction in measured MWF 
can, e.g., result from either lower myelin content (demye-
lination) or higher intra/extra water content (inflammation 
or edema). Previous studies have suggested that the 
total water content has a minimal effect on MWF, with 
reductions primarily attributed to demyelination (Laule 
et  al., 2004; Vavasour et  al., 2021). Another factor that 
could influence the measured MWF is iron content, which 
is known to decrease T2 relaxation time and may lead to 
overestimation of MWF (Birkl et  al., 2019). Contrasting 
findings, however, have been reported, as another study 
demonstrated lower MWF values in regions with higher 
iron content (Khattar et al., 2021), suggesting that further 
investigation is needed to gain deeper insights into this 
cofactor. Additionally, incorporating other imaging con-
trasts alongside mcT2, such as diffusion (Kolind et  al., 
2008; Rahmanzadeh et  al., 2021) and magnetization 
transfer (Schmierer et al., 2004), may provide additional 
valuable information and more accurate estimation of 
microstructural tissue changes.

6.  CONCLUSIONS

This study introduces a new data-driven approach to mcT2 
analysis, which includes a new B1

+ correction procedure 
and incorporates entropy and pseudo-orthogonality regu-
larizations in the simulated multicomponent signal model. 

By drawing from concepts in statistics, the data-driven 
approach identifies global mcT2 patterns in the WM, which 
are more likely to appear in the tissue, and are subse-
quently used to analyze the local signal in each voxel. This 
endows the resulting MWF values with high accuracy, pre-
cision, and robustness to noise when compared with the 
conventional RNNLS approach. The substantial difference 
in MWF values between healthy subjects and NAWM in 
people with MS indicates the potential of data-driven MWF 
values as a radiological biomarker for MS.

The ensuing values can be further extended to explore 
various aspects of the MS disease, including associated 
psychiatric conditions and cognitive impairment (Curti 
et al., 2018), optic neuritis (Reich et al., 2009), and remye-
lination (Caverzasi et al., 2023). The data-driven approach 
itself can be also utilized for a broader range of applica-
tions involving multicompartment analysis, such as fat/
water separation (Nassar et al., 2023), analysis of the pros-
tate (Storås et al., 2008), tumor characterization (Nikiforaki 
et al., 2020), and generalized to other types of contrasts.
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APPENDIX A: MATLAB’S QUADPROG SOLVER

The minimization problem in Eq. (12) was solved using 
Matlab’s quadprog solver (Mathworks, version 2022b) for 
quadratic problems with linear constraints:

	
argmin

x

1
2
xTHx + qT x such that xi ≥ 0

	
(A.1), 

where H is semipositive definite matrix and q is a linear 
term. The optimization problem is cast into the quadratic 
programming solver by rearranging Eq. (12):

	
1
2
DW − s 2

2 + λTik W 2
2 + λL1 W  =

	
(A.2)

= 1
2
DW− s( )T DW− s( )+ λTikW

TW + λL1 W ,

where D is a dictionary of selected mcT2 motifs, W∈RD  
is the unknown vector of weights of the elements in D, D  
is the number of elements in D, and λTikh, λL1≥ 0  are Tik-
honov and L1 regularization weights. To keep only physi-
cal solutions, we constrain the elements in W to be 

non-negative, i.e., Wi ≥ 0  so W1 = Wii∑ = Wii∑ . 
Rearranging the last expression yields

	
1
2
DW− s( )T DW− s( )+ λTikW

TW+λL1 W =
�

(A.3)

= 1
2
WTDTDW− 2sTDW + sT s( )+ λTikW

TW+ λL1
i
∑Wi.

The term sT s does not depend on W and thus has no 
effect on the minimization and can be discarded:

1
2
WTDTDW − STDW + λTikW

TW + λL1
i
∑Wi =

�
(A.4)

= 1
2
WT DTD + 2λTik I( )W − sTDW + λL11

TW

= 1
2
WT DTE + 2λTik I( )W + λL11

T − sTD( )W,

where I  is the identity matrix and 1T  is a vector of ones. 
Using the expression in Eq. (A.1), we can calculate that 
H=DTD + 2λTik I and qT = λL11

T− STD.
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